A Ring-Closing Yne-Carbonyl Metathesis of Ynamides

Kimberly C. M. Kurtz, Richard P. Hsung,*,† and Yanshi Zhang

*Department of Chemistry, Uni*V*ersity of Minnesota, Minneapolis, Minnesota 55455 rphsung@pharmacy.wisc.edu*

Received October 13, 2005

ORGANIC LETTERS 2006 Vol. 8, No. 2 ²³¹-**²³⁴**

ABSTRACT

a formal hetero enyne ring-closing metathesis

An acid-catalyzed ring-closing ynamide-carbonyl metathesis is described here. This hetero RCM methodology is applicable to the construction of carbocycles as well as heterocycles such as chromenes, quinolizidines, indolizidines, and pyrrolizidines.

Ring-closing metathesis (RCM) is widely recognized as one of the most powerful tools in organic synthesis.1 Considerable investigation has taken place in the areas of alkene-alkyne (or enyne) ring-closing metathesis, and many inventive works appear in the literature. 2^{-4} However, less common are those metatheses where one of the reacting partners is a carbonylcontaining functional group; such transformations are formal

(1) For reviews on RCM, see: **(**a) Trnka, T. M.; Grubbs, R. H*. Acc. Chem. Res*. **2001**, *34*, 18. (b) Schrock, R. R.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* **2003**, *42*, 4592. (c) Walters, M. A. *Prog. Heterocycl. Chem.* **2003**, *15*, 1. (c) Nakamura, I.; Yamamoto, Y. *Chem. Re*v*.* **2004**, *104*, 2127. (d) Deiters, A.; Martin, S. F. *Chem. Re*v*.* **2004**, *104*, 2199. (e) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. *Chem. Re*v*.* **2004**, *104*, 2239. (f) Wallace, D. J. *Angew. Chem., Int. Ed.* **2005**, *44*, 1912.

(2) For reviews on enyne metathesis, see: (a) Diver, S. T.; Giessert, A. J. *Chem.* Rev*.* **2004**, *104*, 1317. (b) Mori, M. *J. Mol. Catal. A* **2004**, *213*, 73. (c) Poulsen, C. S.; Maden, R. *Synthesis* **2003**, 1. (d) Mori, M. In *Handbook of Metathesis*; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, 2003. (e) Fu¨rstner, A. *Angew. Chem., Int. Ed.* **2000**, *39*, 3012.

(3) For some recent examples of enyne metathesis, see: (a) Hansen, E. C.; Lee, D. *J. Am. Chem. Soc.* **2004**, *126*, 15074. (b) Castarlenas, R.; Eckert, M.; Dixneuf, P. H. *Angew. Chem., Int. Ed.* **2005**, *44*, 2576. (c) Galan, B. R.; Giessert, A. J.; Keister, J. B.; Diver, S. T. *J. Am. Chem. Soc.* **2005**, *127*, 5762. (d) Kim, M.; Lee, D. *Org. Lett.* **2005**, *7*, 1865.

(4) For enyne metathesis using heteroatom-substituted alkynes, see: (a) Saito, N.; Sato, Y.; Mori, M. *Org. Lett.* **2002**, *4*, 803. (b) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar. C.; Mulder, J. A.; Grebe, T. P. *Org. Lett.* **2002**, *4*, 2417. (c) Schramm, M. P.; Reddy, D. S.; Kozmin, S. A. *Angew. Chem*., *Int*. *Ed*. **2001**, *40*, 4274. (d) Timmer, M. S. M.; Ovaa, H.; Filippov, D. V.; Van der Marel, G. A.; Van Boom, J. H. *Tetrahedron Lett*. **2001**, *42*, 8231. (e) Clark, J. S.; Hamelin, O. *Angew Chem., Int. Ed.* **2000**, *39*, 372.

10.1021/ol052487s CCC: \$33.50 © 2006 American Chemical Society **Published on Web 12/16/2005**

Scheme 1. Formal Hetero Enyne RCM

hetero enyne metatheses (Scheme 1).⁵ Most recently, Krische reported an elegant account describing a catalytic intramolecular metathesis with acetylenic ketones and aldehydes.⁶ Our interest in developing useful synthetic methodologies

[†] Current address: Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin, Madison, WI 53705-2222.

⁽⁵⁾ For leading examples, see: (a) Curini, M.; Epifano, F.; Maltese, F.; Rosati, O. *Synlett* **2003**, 552. (b) Viswanathan, G. S.; Li, C.-J. *Tetrahedron Lett.* **2002**, *43*, 1613. (c) Wempe, M. F.; Grunwell, J. R. *Tetrahedron Lett.* **2000**, *41*, 6709. (d) Balog, A.; Geib, S. J.; Curran, D. P. *J. Org. Chem.* **1995**, *60*, 345. For some earlier studies, see: (e) Harding, C. E.; Hanack, M. *Tetrahedron Lett.* **1971**, *12*, 1253. (f) Balf, R. J.; Rao, B.; Weiler, L. *Can. J*. *Chem*. **1971**, *49*, 3135.

⁽⁶⁾ For a leading reference, see: Rhee, J. U.; Krische, M. J. *Org. Lett.* **2005**, *7*, 2493

using ynamides^{$7-10$} led us to explore the possibility of ringclosing ynamide-carbonyl metathesis possibly promoted by a Lewis acid $(1 \rightarrow 4)$, which is not known.¹¹ Mechanistically, this reaction would proceed through ring opening of an amide-substituted oxetene intermediate **3** formed through a stepwise hetero $[2 + 2]$ cycloaddition pathway.^{12,13} We communicate here our preliminary success in ring-closing yne-carbonyl metathesis employing ynamides.

To achieve such a hetero ring-closing metathesis, we commenced our work by screening a range of Lewis acids as summarized in Table 1. Specifically, oxazolidinone,

Table 1. Screening of Lewis Acids and Catalysts								
entrv	aldehyde a	Lewis acid mol % time [h] temp $[^{\circ}C]$ product yield $[^{\circ}C]$ ¹						
1		BF_3 -OEt ₂	5	0.5	rt			51
2		BF_3 -OE t_2	10	0.5	rt			74
3		BF_3 -OEt ₂	25	0.5	rt			82
4 Ph		BF_3 -OE t_2	50	0.5	rt			74
5		BF_3 -OE t_2	75	0.5	rt			71
6		BF_3 -OE t_2	100	0.5	rt	Ph		74
$\overline{7}$		InCl ₃	25	20	-78 °C to rt			$\overline{7}$
8	5	$Mg(OTf)_2$	25	5	rt.	6		85
9		$Sn(OTf)_2$	25	5	rt.			92
10		$Ti(O/Pr)_{3}Cl$	25	20	$-78 °C$ to rt			nd ^c
11		TiCI _A	25	20	-78 °C to rt			nd
12		$Zn(OTf)_{2}$	25	5	rt			81
13		BF_3 -OEt ₂	25	0.5	rt			51
14	Ν	$Mg(OTf)_2$	25	5	rt			45
15		$Sn(OTf)_2$	25	5	rt			42
16	Ш	$Sn(OTf)_2$	25	5	rt			43
17	7	$Zn(OTf)_{2}$	25	5	rt	8		56
18	$Ts \sim N$ ^{Sn}	BF_3 -OEt ₂	25	20	- 78 °C to rt		Вn	46
19		$Mg(OTf)_{2}$	25	5	rt	Ts ^N		14
20		$Zn(OTf)_2$	25	5	rt			48
21		$Sn(OTf)_2$	25	5	rt			48
22	9	$In(OTf)_{3}$	25	20	rt	10		$\overline{4}$

a All reactions were carried out in CH₂Cl₂ at a concentration of 0.01 M. *b* Isolated yields. *c* nd: not determined.

camphor lactam, and sulfonamide based ynamides **5**, **7**, and **9** were used, as they represent three major classes of ynamides. Entries $1-6$ establish that BF_3-OE_2 is an excellent catalyst with a loading of 25 mol % (entry 3), giving the highest yield of the oxazolidinone-based metathesis product **6**. ¹⁴ However, other Lewis acids also worked comparably well at room temperature (entries 8, 9, and 12).

In general, metal triflate catalyzed reactions appear to be slower than those catalyzed by BF_3-OE_2 and required reaction times of 5 h or greater. The exceptions are $InCl₃$ (entry 7), TiCl₄, and Ti(O*i*-Pr)₃Cl (entries 10 and 11),¹⁵ which failed to give the desired product. Hetero-RCM of less stable ynamides such as **7** (*aza*-camphor substituted) and **9** (sulfonyl substituted) were also feasible, although yields of the corresponding metathesis products were lower than those of **5**. We attribute these lower yields to the relative stability of ynamides **7** and **9**.

The generality of this hetero RCM is shown in Table 2. Specifically, six- and seven-membered rings are also acces-

 a All reactions were carried out with BF_3-OE_2 in CH_2Cl_2 at a concentration of 0.01 M. *^b* Isolated yields. *^c* Entries for substrates **11**, **13**, **19**, and **21** were done at room temperature. *^d* Reaction temperature for **15** and **17** went from -78 °C to room temperature. ^{*e*} 1.25 equiv of BF₃-OEt₂ was used at room temperature with a concentration of 0.04 M.

sible via this method ($11 \rightarrow 12$ and $13 \rightarrow 14$), though the seven-membered ring was formed in lower yield. In addition, ynamides **15** and **17** also underwent the hetero ring-closing

⁽⁷⁾ For reviews on ynamides, see: (a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7575. (b) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. *Synlett* **2003**, 1379. (c) Katritzky, A. R.; Jiang, R.; Singh, S. K. *Heterocycles* **2004**, *63*, 1455.

⁽⁸⁾ For recent reports on ynamides, see: (a) Dunetz, J. R.; Danheiser, R. L. *J. Am*. *Chem*. *Soc*. **2005**, *127*, 5776. (b) Riddell, N.; Villeneuve, K.; Tam, W. *Org. Lett.* **2005**, *7*, 3681. (c) Zhang, Y. *Tetrahedron Lett.* **2005**, *46*, 6483. (d) Martinez-Esperon, M. F.; Rodriguez, D.; Castedo, L.; Saa´, C. *Org. Lett.* **2005**, *7*, 2213. (e) Bendikov, M.; Duong, H. M.; Bolanos, E.; Wudl, F. *Org. Lett*. **2005**, *7*, 783. (f) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. *Org. Lett.* **2004**, *6*, 1509. (g) Rosillo, M.; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. *J. Org. Chem.* **2004**, *69*, 2084. (h) Couty, S.; Liégault, B.; Meyer, C.; Cossy, J. *Org. Lett.* **2004**, *6*, 2511. (i) Rodrı´guez, D.; Castedo, L.; Saa´, C. *Synlett* **2004**, 783. (j) Rodrı´guez, D.; Castedo, L.; Saa´, C. *Synlett* **2004**, 377. (k) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. *Org. Lett.* **2004**, *6*, 727. (l) Klein, M.; König, B. *Tetrahedron* 2004, 60, 1087. (m) Marion, F.; Courillon, C.; Malacria, M. *Org. Lett.* **2003**, *5*, 5095. (n) Witulski, B.; Alayrac, C.; Tevzaadze-Saeftel, L. *Angew. Chem., Int. Ed.* **2003**, *42*, 4257. (o) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. *Org. Lett.* **2003**, *5*, 67. (p) Witulski, B.; Lumtscher, J.; Bergsträber, U. *Synlett* **2003**, 708. (q) Naud, S.; Cintrat, J.-C. *Synthesis* **2003**, 1391. (r) Witulski, B.; Alayrac, C. *Angew. Chem., Int*. *Ed*. **2002**, *41*, 3281. (s) Timbart, J.-C.; Cintrat. J.-C. *Chem. Eur. J.* **2002**, *8*, 1637.

metathesis with ketones to give methyl cyclopentenes **16** and **18** in 33% and 89% yields, respectively.

Intriguingly, ynamides **19** and **21** tethered with imides also underwent hetero RCM to give indolizidine motifs **20** and **22**, respectively, in good yields. In these cases, however, 1.25 equiv of BF_3-OEt_2 had to be used and triflate salts were entirely ineffective. These two reactions suggest that the initial 1,2-addition of ynamides could likely proceed through either the *N*-acyl imidinium intermediate **A** (most likely) or **B** (Table 2) obtained via BF_3 -OEt₂ activation of one of the two imide carbonyl groups.16

Another interesting example of this ynamide-carbonyl RCM is given in Scheme 2. During the synthesis of ynamide

26 under our amidation conditions,^{10b} we discovered that the ynal ring-closing metathesis had occurred concomitantly to give chromene **25** with an overall yield of 60%, constituting a tandem amidation-metathesis.

(9) For our recent work on ynamides, see: (a) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. *Org*. *Lett*. **2005**, *7,* 1047 (b) Tracey, M. R.; Zhang, Y.; Frederick, M. O.; Mulder, J. A.; Hsung, R. P. *Org. Lett.* **2004**, *6*, 2209. (c) Shen, L.; Hsung, R. P. *Tetrahedron Lett.* **2003**, *44*, 9353. (d) Frederick, M. O.; Hsung, R. P.; Lambeth, R. H.; Mulder, J. A. Tracey, M. R. *Org. Lett.* **2003**, *5*, 2663. (e) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P.; Coverdale, H. A.; Frederick, M. O.; Shen, L.; Zificsak, C. A. *Org. Lett.* **2003**, *5*, 1547. (f) Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. *Org. Lett.* **2002**, *4*, 1383.

(10) For the synthesis of ynamides, see: (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. *J. Am. Chem. Soc.* **2003**, *125*, 2368. (b) Zhang, Y.; Hsung R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. *Org. Lett.* **2004**, *6*, 1151. Also see: (c) Dunetz, J. R.; Danheiser, R. L. *Org. Lett.* **2003**, *5*, 4011. (d) Couty, S.; Barbazanges, M.; Meyer, C.; Cossy, J. *Synlett* **2005**, 906. (e) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P. *Tetrahedron* **2001**, *57*, 459.

(11) For a preliminary disclosure of this work, see: Kurtz, K. C. M.; Hsung, R. P.; Zhang, Y. 229th ACS National Meeting, San Diego, CA, March, 2005; Abstract ORGN-620.

(12) (a) Fuks, R.; Viehe, H. G. *Chem. Ber.* **1970**, *103*, 564. (b) Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Douglas, C. J.; Xiong, H.; Mulder, J. A. *Org. Lett*. **1999**, *1*, 1237.

(13) (a) Mori, S.; Shindo, M. *Org. Lett.* **2004**, *6*, 3945. (b) Shindo, M.; Sato, Y.; Yoshikawa, T.; Koretsune, R.; Shishido, K. *J. Org. Chem*. **2004**, *69*, 3912. (c) Shindo, M.; Matsumoto, K.; Mori, S.; Shishido, K. *J. Am. Chem. Soc.* **2002**, *124*, 6840. (d) For a review, see: Shindo, M. *Synthesis* **2003**, 2275.

(14) Procedures and characterizations for all new compounds can be found in Supporting Information.

(15) In some of these cases, trace amounts of the α -chloroenamide were observed.

(16) For some examples of related additions to imide carbonyls, see: (a) Lee, J.; Ha, J. D.; Cha, J. K. *J. Am. Chem. Soc.* **1997**, *119*, 8127. Also see recently: (b) Dvornikovs, V.; Hoye, T. R. 229th ACS National Meeting, San Diego, CA, March, 2005; Abstract ORGN-665.

i) 20 mol % CuSO₄-5H₂O, toluene, 65-70 °C, 40 h. ii) 20 mol % CuSO₄-5H₂O and 40 mol % 1,10-phenanthroline, toluene, 65-70 °C, 40 h.

To clarify that this is likely a tandem amidation-metathesis and not tandem metathesis-amidation, we carried out two control studies. As shown in Scheme 3, hetero RCM of ynamide **⁵** could be achieved using 25 mol % of CuSO4' $5H₂O$, although heating at 65 °C was necessary to drive the reaction to completion over 32 h, leading to **6** in 56%. On the other hand, hetero RCM of alkynyl bromide **23** did not occur while heating with 20 mol % of $CuSO₄·5H₂O$ or 40 mol % of 1,10-phenanthroline in addition to $CuSO₄·5H₂O$ at 65 °C.17 This effectively rules out acyl bromide **27** as an intermediate leading to chromene **25**. Because we were intrigued with potential reactivities of alkynyl halides 17 such as **23**, we further attempted the ring-closing metathesis by employing 10 mol % of AgBF₄ at 90 °C in $(CH_2Cl)_2$ for 14 h, conditions described in Krische's report.⁶ However, we only observed a trace amount of the potential hetero RCM product.

Having established the feasibility of an ynamide-carbonyl ring-closing metathesis, we were able to successfully apply this hetero RCM to the synthesis of an optically enriched

pyrrolizidine motif. As shown in Scheme 4, starting from (*S*)-5-hydroxymethyl-pyrrolidin-2-one **28**, TBS protection and propargylation of the amide nitrogen gave **29** in good yield over 2 steps. Bromination was carried out with LHMDS and bromine, and subsequent Cu(II)-catalyzed cross-coupling^{10b} yielded ynamide **31**. Removal of the TBS protecting group in **31** was followed by oxidation using TEMPO and BAIB (bisacetoxy-iodobenzene).18 However, under the these oxidative conditions, hetero RCM occurred in situ to give pyrrolizidinone **34** in 50% yield.

While this success provides a rather facile approach toward pyrrolizidine alkaloids, we were intrigued by this tandem oxidation-metathesis, especially after finding that PDC oxidation of ynamide **35** also led to quinolizidine **37** in 53% overall yield via the same tandem oxidation-metathesis process (Scheme 5).

We suspected that HOAc or a related Brønsted acidic species¹⁹ was promoting the hetero RCM during the oxidation of **32** or **35**. As shown in Scheme 6, when in excess, HOAc could promote the RCM of ynamide **5**, although the reaction is much slower than using BF_3-OEt_2 (entry 1 versus entries ²-4). A stronger Brønsted acid such as PNBSA9d,f (*p*-nitrobenzenesulfonic acid) was an improvement, albeit still inferior to BF_3-OEt_2 in terms of the required loading and reaction time (entries 5 and 6). It turned out that $HNTf₂$ was again a "magic" Brønsted acid^{9a,20,21} with an efficiency comparable to that of BF_3-OEt_2 . By using 25 mol %, the

 a Isolated yields. b Entries 2-4 represent the same continuous reaction in which HOAc was added successively. *^c* Conversion of **5**. *d*Isolated yield at 50% conversion. *e*PNBSA = *p*-nitrobenzene-sulfonic acid sulfonic acid.

RCM product **6** was isolated in 64% yield after only 15 min at room temperature (entry 7). However, overall none of these reactions was as clean as those promoted by BF_3-OEt_2 . Nevertheless, the feasibility of using Brønsted acids to promote this hetero ring-closing metathesis provides another useful dimension to this methodology, especially when the RCM occurs in a tandem manner.

In summary, an acid-catalyzed ring-closing ynamidecarbonyl metathesis has been developed. This method is applicable to the construction of carbo- as well as oxygenand nitrogen-containing heterocycles.

Acknowledgment. Authors thank NIH-NIGMS (GM066055) and NSF (CHE-0094005) for support.

Supporting Information Available: Experimental and ¹H NMR spectral and characterizations for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052487S

⁽¹⁷⁾ For a recent account on methods using alkynyl halides, see: Yoo, W.-J.; Allen, A.; Villeneuve, K.; Tam, W. *Org. Lett.* **2005**, *7*, ASAP.

⁽¹⁸⁾ De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. *J. Org.* Chem. **1997**, *62*, 6974.

⁽¹⁹⁾ Actually, ynamide **5** (neat) slowly underwent hetero RCM upon standing in the refrigerator, and over a period of 4.5 months, it gave a mixture of **5** and the metathesis product **6** in 2.7:1 ratio.

⁽²⁰⁾ For some examples of Brønsted acid catalysis, see: (a) Sun, J.; Kozmin, S. A.; *J. Am. Chem. Soc.* **2005**, *127*, 13512. (b) Williams, A. L.; Johnston, J. N. *J*. *Am*. *Chem*. *Soc*. **2004**, *126,* 1612. (c) Zhang, L.; Kozmin, S. A. *J. Am. Chem*. *Soc*. **2004**, *126*, 10204. (d) Cossy, J.; Lutz, F.; Alauze, V.; Meyer, C. *Synlett* **2002**, 45. (e) Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. *Synlett* **2001**, 1851.

⁽²¹⁾ For a study on the acidity of $HNTf_2$, see: Thomazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts, S.; Gilbert, B. *J. Am. Chem. Soc.* **2003**, *125*, 5264.